
Dynamic SELECT and UPDATE statements
with MuleSoft DataWeave

Why Read This Blog Post? (What problem are we solving)
There are at least three problems MuleSoft developers face when implementing a REST API
where the data is backed by a relational database:

1. If any resources in the API have multiple optional query parameters that dictate a SQL
query, the permutations for the WHERE clause become exponential and unmanageable.

2. Programmatically building SQL queries from dynamic input such as HTTP query
parameters risks SQL injections, unless you have the proper code.

3. REST APIs should not leak implementation details, such as table or column names in a
database.

This blog provides MuleSoft developers with the tools they need, including code, to create and
implement APIs with multiple optional query parameters that drive SQL queries without risking
SQL injection or leaking implementation details.

Objectives
When you have completed reading this blog, you should be able to:

1. Create RAML that has multiple dynamic query parameters for GET methods and various
data models (types) for GET, PUT/POST, and PATCH methods.

2. Create a project based on that API (you did this in the Fundamentals and other courses)
3. How to modify the scaffolded code to:

a. Comply with the HTTP specification to ignore request bodies on GET requests
b. Create dynamic objects for GET and PATCH operations, using DataWeave, saving

those objects in event variables such as dynamicWhere and dynamicUpdate.
4. How to write SQL statements using the DB module that use the dynamic objects crated

in Step 3.b.

Solution Overview
At a high level, to design and implement a REST API as discussed in the previous section, you
need:

1. An API definition that sticks to the REST principal that each resource represents an
object or collection thereof, (for example: /cars and /cars/{carID}, /flights and
/flights/{ID}) and may also include relational resources between objects (for example,
/flights/{flightID}/passengers) where the related resource (in this case passengers) also
represents a collection of objects, an object, or a property thereof.

2. A database with a 1-to-1 relationship between resources and tables. Following the
example above, the database should contain a table for cars, another for flights, another
for passengers.

3. Query parameters for GET requests on a resource in the API definition that correlate to
at most one column in the table associated with the resource.

4. An object model (that is, a type definition in RAML) that has one column in the
associated table for each property in the object model. (For example, suppose the flight
object has properties: ID, number, aircraftID, and takeoffDateTime. There must be a
table that has columns for each of these properties). IMPORTANT, the name of the
resource does not, and probably should not, be the same as the name of the table.
Similarly, the names of the columns in said table do not, and probably should not, be
the same as the names of the properties. Having those names the same leaks internal
implementation details.

5. The mappings of resource names to table names, and with resources/tables, mapping
between query parameters and mapping between object properties and column names.

6. A Mule application development project with an interface.xml file scaffolded from the
API.

After creating the database table, API, and Mule project, in your code, you will:

1. Create a file with a JSON object with a map between resources, tables, query
parameters and columns

2. Create a file with a JSON object with a map between resources, tables, object properties
and columns

3. Create a file with the DataWeave provided in this blog post.
4. Add a Transforms Message processors at the beginning of each flow in your

Interface.xml file that is for a GET or PATCH method:
a. In the GET transform, import the DataWeave file (Step 3) and invoke

makeDynamicWhere passing the query parameters and the name of the
resource on which the method was invoked.

b. In the GET transform, import the DataWeave file (Step 3) and invoke

makeDynamicUpdate passing the query parameters and the name of the
resource on which the method was invoked.

5. For each DB:SELECT processor, use the object created in Step 4 to craft the query.

Your job is done. These two functions do all the work for you. For details on how they work,
read on. If you just want to see the DataWeave, skip on down to here.

A Complete Example Project
The following sections provide details of the entire project, including the database table
schemas, the RAML API specification, and the Mule Design project. Specifically, this project
shows how to create a complete project with dynamic query parameters and dynamic SQL
statements for a project with resources of people and their jobs.

You can find the complete project on GitHub here. It contains the completed Mule Design
project plus a database dump. See the README.md file to see how to use the project.

https://github.com/TheComputerClassroom/dynamicSQLGETandPATCH

The Database Schema
The database that this project will query has the following three tables:

• people whose columns are:

• jobs whose columns are:

• personJob that provides N:M mapping of people to jobs and whose columns are:

The RAML
We need a root RAML file with our resources, libraries with separate data models for input,
output, and patching the resources, and ideally resourceTypes for collections and member
resources. For details on working smarter with libraries and resourceTypes, see this blog.

The ROOT RAML
Here is a simplified version of our root RAML:

https://www.compclass.com/?p=395

The RAML libraries
We need two libraries, one that describes objects for people (a person), and one for jobs. Each
library needs a separate object model (type) for input (POST/PUT), output (GET), and update
(PATCH) operations.
Here is the library describing jobs:

#%RAML 1.0

title: example

mediaType:

 - application/json

uses:

 person: libraries/personLib.raml

 job: libraries/jobLib.raml

/people:

 description: actions on a collection of **people**

 # shortened RAML on the collection to demonstrate basics

 post:

 body:

 type: person.personIn

 get:

 queryParameters:

 # one query parameter for each property on which we allow query.

 # all are optional

 fname?:

 lname?:

 address?:

 responses:

 200:

 description: successfully retrieved some set of people

 body:

 type: person.personOut[]

 /people/{personID}:

 # shortened RAML on member to demonstrate RAML basics

 get:

 responses:

 200:

 body:

 type: person.personOut

 put:

 body:

 type: person.personIn

 patch:

 body:

 type: person.personPatch

 /jobs:

 description: jobs held by the selected person

 get:

 queryParameters:

 ratePerHour?:

 type: number

 format: double

 title?: string

 companyName?: string

/jobs:

 post:

 get:

 queryParameters:

 ratePerHour?: number

 title?: string

 companyName: String

Here is the library describing person(s) (people):

#%RAML 1.0 Library

usage: contains objects for CRUD operations on **job** objects

types:

 jobIn:

 properties:

 companyName: string

 companyAddress: string

 title: string

 workAddress: string

 ratePerHour: number

 jobOut:

 type: jobIn

 properties:

 ID: string

 jobPatch:

 properties:

 companyName?: string

 companyAddress?: string

 title?: string

 workAddress?: string

 ratePerHour?: string

The key take-aways from this RAML are that:

1. The API has GET on /people that has query parameters: fname, lname, and address, to
query only for people that have the specified first / last names and/or address.

2. The API has PATCH on /people/{personID} to enable modification of a person’s first /
last names and address.

NOTE1: the API is abbreviated for this blog. A full API definition would include, at the least:

• A set of results with body, etc. for the GET on /people/{personID}/jobs

• Resources for /jobs/{jobID} with GET / PUT / PATCH methods similar to those operations
on /people/{personID}

• A set of resourceTypes to shorten the root RAML. They are left out for clarity.

NOTE2: you can see the API definition included in the Mule Design project, imported as an asset
from Exchange.

The Interface File
This section shows the code in the interface file. Recall from the Mule 4 Fundamentals course
that the interface file is created from scaffolding an API. It starts out with:

• A main flow with an HTTP(s) listener and an APIKit Router.

#%RAML 1.0 Library

usage: contains objects for CRUD operations on **person** objects

uses:

 job: jobLib.raml

types:

 personIn:

 properties:

 firstName: string

 lastName: string

 address1: string

 jobs: job.jobIn[]

 personOut:

 type: personIn

 properties:

 ID: string

 jobs: job.jobOut[]

 personPatch:

 type: object

 properties:

 firstName?: string

 lastName?: string

 address1?: string

• A console flow with an HTTP(s) listener and an APIKit Console Router

• One flow per endpoint (method : resource pair) in the API specification. Our API has
eight (8) endpoints, so there are eight (8) flows beyond the main and console flows. It
starts out, graphically, looking like the following:

NOTE: The flows are in ordered first alphabetically by method, and then by resource. That
is, it has all of the GET methods before the POST before the PUT etc.

Standard cleanup and rearrangement of the interface.xml file
Whenever I scaffold an API, there are several things I do in order to clean things up,
including:

1. In order to comply with the HTTP protocol specification, where all GET methods
should ignore any incoming body send by the client, to all flows for GET methods,
add a set payload processor at the front of said flows, setting payload to null.

2. I move the error handling from the main and console flows to the file errors.xml
which I create just to hold these and other error handlers.

3. Finally, I reorganize the order of the flows in the interface file to match the order in
which they are declared in the API.

 The resulting interface file looks like this:

Configuring Query Parameters Strict Validations
The DataWeave functions presented later in this blog do not (currently) handle the condition
that you provide a query parameter that doesn’t have a mapping. You can fix that with
appropriate application of if/else or try expressions. For simplicity, in this project, simply edit
the configuration of the APIKit Router, displayed here:

Ensure you check Query parameters Strict Validations to which the arrow points. This causes
the APIKit Router to reject (as a bad request) any requests with query parameters not defined
in the API.

The Mapping JSON files
The Dataweave functions (shown and discussed in the next section) for creating dynamic
WHERE clauses and dynamic UPDATE clauses each require a JSON object that, for each resource
in the API (the example has people and jobs as resources):

• The name of the table containing the collection of resources (records)

• For WHERE clauses, the mapping of query parameter names to column names

• For UPDATE clauses, the mapping of object properties to column names.
The following two subsections contain the maps required in our example.
IMPORTANT: both of these files must be placed in the …/src/main/resources folder of your
Mule Design project.

The qpsColumnMap.json file
This file maps query parameters to column names. The format is:

Here is the mapping for this API and its Database:

“resource”: {

 “table”: <tablename>,

 “queryParams”: {

 “queryParam1”: “columnForQueryParam1”,

 “queryParam2”: “columnForQueryParam2” [,…]

 }

}

NOTES:

• The resources and table names happen to be the same. This is

understandable. You may change the table name if this bothers you.

• In the jobs table, the query parameter name happens to be the same as

the column name. You may change the column name or query parameter

name if this bothers you.

The objectPropsColumnMap.json file
This file maps the objects in a PATCH version of an object (see the earlier discussion on
libraries), specifically the properties thereof, to columns in the corresponding table. The format
for this object is almost the same as that for the qpsColumnMap.json file, except:

• Use the word “props” instead of “queryParams” in the pier property to “table”

• The left-side of the map is the property name instead of the query parameter name. The
right-side is still the column name.

Here is the objectPropsColumnMap.json file for this example project:

NOTES:

• In this example, the table names are the same as the resources and property names the
same as the column names. This may or may not be the case and often is forced not to
be the case in the name of security, not leaking internal information. You can see from
the previous example, and this one, that they need not be the same, which is why this
object exists. In your own code, make them different to hide implementation details.

• Only list in this object the properties that are defined in the PATCH version of your
object.

The DataWeave
Now, here is the DataWeave that creates dynamic WHERE clauses and UPDATE statements for
dynamic SQL for GET (collection) and PATCH (member) API endpoints. Because of its size, we
need to split the code across two pages. First, here are the helper functions:

%dw 2.0

import * from dw::core::Strings

// this file must contain ONE JSON object with keys of query parameters and

// values of the corresponding column name.

var mappingObject = readUrl("classpath://objectPropsColumnMap.json", "application/json")

var mappingQPs = readUrl("classpath://qpsColumnMap.json", "application/json")

// Turn obj values into what we need for the DB

// for now, this is a noop. Might change later.

// Originally thought strings needed to be quoted. Not now.

var makeValue = (val) ->

 //if (isNumeric(val)) val as Number else val

 val

// Create both the dynamic where clause with input parameters,

// and the inputParameter object.

var createSetClause = (acc: Object, objectProp: Object | Null | String, objName: String) ->

 if(objectProp is Object)

 do {

 var objInfo = mappingObject[objName]

 var propColumnMap = mappingObject[objName].props

 var colName = propColumnMap[namesOf(objectProp)[0]]

 if (colName == null) // there is no match, just return current acc

 acc

 else

 if(acc.set == '') { // first time through

 set: 'SET $(colName) = :$(colName)',

 params: { (colName): makeValue(valuesOf(objectProp)[0]) }

 }

 else { // second+ time through, add

 set: "$(acc.set), $(colName) = :$(colName)",

 params: acc.params ++

 { (namesOf(objectProp)[0]): makeValue(valuesOf(objectProp)[0]) }

 }

 } // do

 else { set: acc.set, params: acc.params}

// Create both the dynamic where clause with input parameters,

// and the inputParameter object.

var createWhereClause = (acc: Object, qpo: Object | Null | String, objName: String) ->

 if(qpo is Object)

 do {

 var objInfo = mappingQPs[objName]

 var qpColumnMap = mappingQPs[objName].queryParams

 var colName = qpColumnMap[namesOf(qpo)[0]]

 if (colName == null) // there is no match, just return current acc

 acc

 else

 if(acc.where == '') {

 where: 'WHERE $(colName) = :$(colName)',

 params: { (colName): makeValue(valuesOf(qpo)[0]) } }

 else {

 where: "$(acc.where) AND $(colName) = :$(namesOf(qpo)[0])",

 params: acc.params ++

 { namesOf(qpo)[0]): makeValue(valuesOf(qpo)[0]) }

 }

 } // do

 else { where: "", params: ""}

//var processObject =

// 1. turn queryParams or some other object into an array of key-value pairs

// that can then be processed by reduce

// 2. use 'reduce' to iterate over each query parameter

// and call createSetClause or createWhereClause to create:

// a. a SET or WHERE clause with parameterized inputs

// b. an inputParmeter object with key/value pairs for the parameters in 2.a.

var processObject = (anObject: Object, objName: String, clause: String) ->

 // turn updateObject object into an array of key-value pairs

 // that can then be processed by reduce

 (anObject pluck (v, k) ->

 (k): v)

 // use 'reduce' to iterate over each query parameter

 // and create the Where-clause string and input parameter object

 reduce (prop, acc={set: '', where: '', params: ''}) ->

 clause match {

 case 'SET' -> createSetClause(acc, prop, objName)

 case 'WHERE' -> createWhereClause(acc, prop, objName)

 } // match

Here is the rest of the dynamicQueryFunctions.dwl file, containing the two main

functions:

Explanation of the Dataweave

The two main functions: makeDynamicWhere() and makeDynamicUpdate()
The two main functions are makeDynamicWhere() and makeDynamicUpdate().

Use makeDynamicWhere() to create objects necessary to do dynamic SQL SELECT statements
from optional query parameters such as those associated with a GET method.

Use makeDynamicUpdate() to create objects necessary to create a dynamic SQL UPDATE
statement from an object with optional properties such as one associated with a PATCH
method.

Here is what the functions do:

1. Both methods take as their first parameter an object that is either the query parameters
for a GET or the object in the body of a PATCH. As a second parameter, they both take
the name of the resource on which the method was invoked (in our case ‘people’ or
‘jobs’).

2. Both methods create an object assigned to variable dynamic that has several properties
that get modified during call to processObject() (discussed next).

a. The makeDynamicWhere’s object has where and params properties.
i. where becomes a string with a dynamically created SQL WHERE clause,

with parameterized inputs, for example, “WHERE xx = :yy” where xx is the
name of a column associated with a query parameter (see the map object
discussed previously), and yy is a placeholder for the associated query
parameter’s value.

ii. params becomes an object with keys matching the placeholders (e.g.
“yy” in the example) and the placeholder’s value in key: value pairs, for
example: { yy: “value1” }.

b. The makeDynamicUpdate’s object has three properties: set, params, and start:
i. Set becomes a string analogous to the where property described above,

with a list of fields to be set based on the properties present in the body
of the PATCH request. It uses property placeholders just as the WHERE
clause discussed in the preceding object. For example, this can become:
“SET xx = :yy” where xx is the column name associated with a property in
the PATCH object, and :yy is a placeholder for the associated value.

var makeDynamicWhere = (queryParams: Object, objName: String) ->

 do {

 var dynamic = processObject(queryParams, objName, 'WHERE')

 if (dynamic.params == '') { where: "", params: ""}

 else dynamic

 } // do

var makeDynamicUpdate = (updateObject: Object, objName: String) ->

 do {

 var dynamic = processObject(updateObject, objName, 'SET')

 if (dynamic.params == '') { set: "", params: "",

 start: "UPDATE $(mappingObject[objName].table as String) "}

 else dynamic ++

 "start": "UPDATE $(mappingObject[objName].table as String)"}

ii. Params becomes an object with the property placeholders as keys and
their associated values as values, just like in the previous object. For
example, “{ yy: ‘1234’ }”

iii. Start is a string that starts the UPDATE SQL statement with the table
name associated with the resource (see the previous object mapping
discussion).

3. Both functions call processObject(), passing their own two parameters, and then either
“WHERE” or “SET” as a third parameters.

The processObject() function
At a high level, this function processes all of the keys in the first parameter (anObject) as an
array of key/value pairs to create either a dynamic SET or dynamic WHERE clause using
createSetClause() and createWhereClause() respectively. Specifically, it:

1. Uses pluck() to turn the key/value pairs of anObject into an array of key/value pairs.
2. It calls reduce() on the array created by pluck() with: A) the current element of the array

remembered in the prop variable, and an accumulator that contains the previously
described object with keys of set, where, and params.

3. It calls createSetClause() if the 3rd parameter (clause) is “SET” (create structures for a
PATCH method) or createWhereClause() if the 3rd parameter (clause) is “WHERE”
(create structures for a GET method).

The create[Set,Where]Clause() functions
These functions essentially do the same thing, but one creates the structure for GET methods
and one for PATCH endpoints. They update different parts of the accumulator object (set vs
where).

1. Both functions start with an if/else that validates that the 2nd parameter (objectProp or
qpo) is an object.

a. If not, it returns the relevant parts of the current accumulator.
2. If it is an object, the function:

a. Looks up the object information in the appropriate map (mappingObject for
createSetClause and qpo for createWhereClause). It stores this in objInfo.

b. Looks up the appropriate map for the object property (createSetClause) or query
parameter (createWhereClause). It stores this in propColumnMap and
qpColumnMap respectively.

c. Looks up the column from the map set in the preceding step. It remembers this
in colName.

3. If colName is not null (the column lookup succeeded), each of these initialize or add to
the existing accumulator object:

a. For createSetClause, the two properties of the accumulator are set and params.
If the value of set is an empty string, then the code initializes set with this line of
code:
 set: “SET $(colName) = :$(colName)”

NOTE: $(xx) inside a string imbeds the value of xx into the string.

It also sets the value of the params property of the accumulator to the name of
the column as the key (the column name was used to create the placeholder),

and then the value set in the property of the object passed into the PATCH
method.

At the end of the first time through this method, the accumulator object has one
item in the SET clause that is parameterized, and one input parameter by the
column name and its new value.

b. If the value of set is not empty, it adds a comma and another column name /
column-placeholder with this line of code:
 set: “$(acc.set), $(colName) = :$(colName)”

Thus, if set had the value “SET xx = :xx” and the new property is “yy”, set gets the
new value “SET xx = :xx, yy = :yy”.

It also adds the property placeholder for the new property to the accumulator’s
params object.

c. For createWhereClause(), the function performs the same logic, except it
modifies the where property in the accumulator object (instead of the set
property), using the string “AND” between query parameters / properties
instead of commas.

NOTE1: Both of these methods call makeValue() to turn the new value into an appropriate
form. For the moment, this method just returns the object passed, so it can be safely ignored,
and even removed if you’d like.
NOTE2: It is entirely possible to combine the logic for these two functions into one function, by
passing the “SET” or “WHERE” parameter from processObject() so that this function knew
whether to create a set or where property in the accumulator object. We leave that to you, the
reader, as an exercise.

Putting the DataWeave to work in the interface.xml file.
Recall from the Production Ready Integrations course (it may have also been discussed in your
Fundamentals and Production Ready Development Practices (PRDP) courses): All code dealing
with having HTTP as your interface should be handled in you interface.xml file, and not in your
implementation file. (NOTE: The Fundamentals and PRDP courses don’t actually do this, though
it may be discussed). This code should not go into the implementation.xml code.

In each flow in your interface.xml file for a GET with query parameters, or PATCH, add a
transform message that invokes the appropriate function, makeDynamic{Where,Update},
respectively. Pass message.attributes.queryParams and the resource, or
message.payload and the resource, to the functions, respectively, saving the results in a

variable, e.g. dynamicWhere or dynamicUpdate. For example:

• For get:\people:….. in a new transform, put this code:
Output application/java

Import makeDynamicWhere from dw::dynamicQueryFunctions.xml

makeDynamicWhere(message.attributes.queryParams, “people”)

• For patch:\people\(personID):… in the new transform, put this code:
Output application/java

Import makeDynamicUpdate from dw::dynamicQueryFunctions.xml

makeDynamicUpdate(message.payload, “people”)

This is an example of the transform message for get:\people (NOTE: I added sample attributes):

You must add similar transform message components in the get:\jobs and patch:\jobs\(jobID)
flows in the interface.xml file.
Here is a view of the interface.xml file with all but the modified flows collapsed:

NOTE: The added transformations are outlined for emphasis.
After creating these transforms, ensure you propogate metadata through the flow references
to the called flows. Propogating the meta-data allows you to see said meta-data in the called
flows, i.e. in your implementatin flows.

Using the Dynamic Objects in your SQL statements
With the API done, the scaffolding done, the DataWeave and mapping objects done, the
modifications made to the scaffolding code as discussed in the immediately preceding section,
you are finally ready to put all this work to use in your flows that implement your endpoints,
especially in the DB connector processors.

To use all this work, all you need to do is to add DB processors in your implementation flows
that use the vars.dynamicWhere and vars.dynamicSet objects created in the Transforms you
created in the applicable flows in your interface.xml file.

To create a dynamic SELECT statement for collections, write code that looks like this (in XML):

NOTES:

• The input-parameters use an if/else

o If there are no parameters, use an empty object

o If there are parameters, use those

• The SELECT statement uses string interpolation to include

vars.dynamicWhere.where, assuming the variable vars.dynamicWhere was

set in the get:\people… flow in the interface.xml file.

To create a dynamic PATCH statement for members of a collection, write code

that looks similar to this (in XML):

NOTES:

• The update statement has to have a WHERE clause (not created by the
makeDynamicUpdate() function) that only updates the record whose ID is that passed
in the URI Parameter for the ID (for example: personID, jobID, etc.)

• The URI parameter needs to be added as an input Parameter. The code above uses the
++ function to add the URI parameter to the other input Parameters, if any.

• To handle the situation that no input parameters were provided, the input-parameters
code has an if/else statement to indicate which input-parameter object to use: just the
URI parameter, or the other inputs plus the URI parameter.

<db:select doc:name="Select" doc:id="bb38a8b3-533b-43eb-b912-79db2683797a" config-ref="Database_Config">

 <db:sql ><![CDATA[#['select * from people $(vars.dynamicWhere.where)']]]></db:sql>

 <db:input-parameters >

 <![CDATA[#[if (isEmpty(vars.dynamicWhere.params)) {} else vars.dynamicWhere.params]]]>

 </db:input-parameters>

</db:select>

<db:update doc:name="Update according to patch data" doc:id="e407bd8e-f8e7-4130-bb72-de86a877bddc"

 config-ref="Database_Config">

 <db:sql ><![CDATA[#['update people $(vars.dynamicUpdate.set) WHERE ID = :uriID']]]></db:sql>

 <db:input-parameters >

 <![CDATA[#[if (isEmpty(vars.dynamicUpdate.params)) { uriID: vars.personID }

 else vars.dynamicUpdate.params ++ { uriID: vars.personID}]]]>

 </db:input-parameters>

</db:update>

Here is a graphical view of the implementation of this small project:

NOTES:

• Not specifically related to this blog’s main topic, there is a flow at the top that validates
that a person exists by the ID provided in the personID URI parameter. You would need
an analogous flow for jobs and other collections. This flow raises and propagates an
error if no person exists by the provided ID. It also sets the httpStatus to 404.

• Each flow for xxxByID (getPersonByID, patchPersonByID, etc.) first calls the
validatePersonID flow before proceeding to other work, such as retrieving or updating
the appropriate record(s) in from the database.

• The flows for GET methods where the GET takes query parameters all have dynamic SQL
whose XML was shown earlier in this blog.

• The flows for PATCH methods all have dynamic SQL whose XML was also shown earlier
in this blog.

Summary
This blog showed you how to:

5. Create RAML that has multiple dynamic query parameters for GET methods and various
data models (types) for GET, PUT/POST, and PATCH methods.

6. Create a project based on that API (you did this in the Fundamentals and other courses)
7. How to modify the scaffolded code to:

a. Comply with the HTTP specification to ignore request bodies on GET requests
b. Create dynamic objects for GET and PATCH operations, saving those objects in

event variables such as dynamicWhere and dynamicUpdate.

8. How to write SQL statements using the DB module that use the dynamic objects crated
in Step 3.b.

